MATH 1022

Fall 2023
Text: James Stewart, Precalculus Mathematics for Calculus, 7th Edition, Cengage learning.
Below are the answers to the even problems. Answers to odd problems are in the book.

2.1:

46) $\frac{1}{a+1}, \frac{1}{a+h+1}, \frac{1}{(a+1)(a+h+1)}$
47) $(-\infty,-3) \cup(-3,2) \cup(2, \infty)$
48) $(-\infty,-2] \cup[2, \infty)$

2.2:

54) Not a function.

2.3:

7) EXTRA $[-3,-1.4) \cup(1.2,4]$
8a) $3,2,-2,1,0$
b) Domain: $[-4,4]$, Range $[-2,3]$
c) -4
d) $(-1,-1.8)$

2.6

14a) The graph of $y=1-f(-x)$ can be obtained by reflecting the graph of $y=f(x)$ about the x-axis, then reflecting about the y-axis, then shifting upward one unit.
22a) The graph of $g(x)=-\sqrt{x}+1$ is obtained by reflecting the graph $f(x)=\sqrt{x}$ about the x-axis, then shifting the resulting graph upward by one unit.
22b) The graph of $g(x)=\sqrt{-x}+1$ is obtained by reflecting the graph $f(x)=\sqrt{x}$ about the y-axis, then shifting the resulting graph upward by one unit.
26) Graph IV.
28) Graph III.
30)

86) Even
90) Odd

3.6:

23) EXTRA $x=-8, x=4$
24) Vertical asymptotes: $x=-1, x=1$; Horizontal asymptote: $y=0$; EXTRA $x=\frac{7}{3}, x=3$

2.7:

58) $(f \circ g)(x)=2+\frac{4}{x}$, Domain $=(-\infty,-2) \cup(-2,0) \cup(0, \infty)$;
$(g \circ f)(x)=\frac{1}{1+x}$, Domain $=(-\infty,-1) \cup(-1,0) \cup(0, \infty)$.
$(f \circ f)(x)=x$, and the domain is $(-\infty, 0) \cup(0, \infty)$.
$(g \circ g)(x)=\frac{x}{3 x+4}$, Domain $=(-\infty,-2) \cup\left(-2,-\frac{4}{3}\right) \cup\left(-\frac{4}{3}, \infty\right)$.
2.8:
59) $f(g(x))=x$ and $g(f(x))=x$. The functions f and g are inverses of each other by the Inverse Function Property.
60) $D_{f}=R_{f^{-1}}=(-\infty, \infty), D_{f^{-1}}=R_{f}=(-\infty, \infty)$
61) $D_{f}=R_{f^{-1}}=(-\infty,-2) \cup(-2, \infty)$ and $D_{f^{-1}}=R_{f}=(-\infty, 0) \cup(0, \infty)$
62) $D_{f}=R_{f^{-1}}=(-\infty,-4) \cup(-4, \infty)$ and $D_{f^{-1}}=R_{f}=(-\infty, 1) \cup(1, \infty)$
63) $D_{f}=R_{f^{-1}}=[0, \infty)$ and $D_{f^{-1}}=R_{f}=(-\infty, 4]$
64) $D_{f}=R_{f^{-1}}=\left[-\frac{5}{8}, \infty\right)$ and $D_{f^{-1}}=R_{f}=[0, \infty)$
65) $D_{f}=R_{f^{-1}}=[-3, \infty)$ and $D_{f^{-1}}=R_{f}=[2, \infty)$

Chapter 2 Review:

84 a) $(f \circ g)(x)=x$
b) $(g \circ f)(x)=|x|$
c) 2
d) 26

