MATH 1041 Review Problems for Test 1 Fall 2023

Text: James Stewart, <u>Calculus, Early Transcendentals</u>, 8th Edition, Cengage Learning
Supplementary Exercises (SE)

Chapter 2: Limits and Derivatives

2.2: Problem 4:

(a) 3

(b) 1

(c) d.n.e. since by (a) and (b), the left and right limits at 2 are unequal

(d) 4

(e) undefined; no value given for function

Problem 8:

(a) a ∞

(b) $-\infty$

- (c) ∞
- (d) $-\infty$
- (e) x = -3, x = -1, and x = 2

Problem 32: $-\infty$

2.3: Problem 2:

• (c) 2

• (d) d.n.e. since
$$\lim_{x \to 3^-} \left(\frac{f(x)}{g(x)} \right) = \infty$$
 but $\lim_{x \to 3^+} \left(\frac{f(x)}{g(x)} \right) = -\infty$

Problem 6: 4 Problem 12: $\frac{3}{7}$ Problem 24: $\frac{-1}{9}$ Problem 26: 1 Problem 38: 2 Problem 42: d.n.e. since $\lim_{x \to -6^-} \frac{2x+12}{|x+6|} = -2$ but $\lim_{x \to -6^+} \frac{2x+12}{|x+6|} = 2$

2.5: Problem 36: 0

Problem 56: Put $f(x) = \sin(x) + x - x^2$. Now, $f(1) = \sin(1) + 1 - 1 = \sin(1) > 0$, but $f(2) = \sin(2) + 2 - 4 = \sin(2) - 2 < 0$. Since f(2) < 0 < f(1) and f is continuous on [1, 2], we conclude, by IVT that there is some c in (1, 2) for which f(c) = 0. This c is a solution to our original equation.

2.6: Problem 18: 2

Problem 24: 2

Problem 36: 1

Problem 52: Horizontal asymptotes are y = 0 and y = 2; vertical asymptote is $y = \ln(5)$

2.7: Problem 16

- (a) (i) 0 feet per second
 - (ii) 1 foot per second
 - (iii) 3 feet per second
 - (iv) 4 feet per second
- (b) 2 feet per second

Problem 38: $f(x) = e^x$, and a = -2. The limit is equal to e^{-2} .

Problem 22: 1

Problem 40: $f(x) = \frac{1}{x}$, and $a = \frac{1}{4}$ The limit is equal to $\frac{-1}{16}$. **2.8:** Problem 24: f'(x) = 8 - 10x, domain of both f and f' is $(-\infty, \infty)$ Problem 26: $g'(t) = \frac{-1}{2\sqrt{t^3}}$, domain of both g and g' is $(0, \infty)$

Problem 42: The function is not differentiable at x = -1 due to a discontinuity, and at x = 2, due to a corner.

Chapter 3: Differentiation Rules

3.1: Problem 4: f'(x) = 0 Problem 14: $f'(x) = \frac{5}{3}x^{-2/3} - \frac{2}{3}x^{-1/3}$ Problem 16: $h'(t) = \frac{1}{4}t^{-3/4} - 4e^t$ Problem 34: y - 2 = 3(x - 0)Problem 50: (a) $v(t) = 4t^3 - 6t^2 + 2t - 1$ m/sec, and $a(t) = 12t^2 - 12t + 2$ (m/sec)/sec (b) a(1) = 2 (m/sec)/sec Problem 56: $x = \ln(2)$ **3.2:** Problem 4: $g'(x) = \left(x + 2\sqrt{x} + 1 + \frac{1}{\sqrt{x}}\right)e^x$ Problem 32: $y - \frac{1}{2} = \frac{1}{4}(x - 0)$ Problem 54: $y = \frac{1}{2}(x - 1)$ and $y - 2 = \frac{1}{2}(x + 3)$ MCC Review Workshop:

Thursday, 28 Sept. 5:00pm - 6:30pm, Gladfelter L021

SSC Review Workshop:

Friday, 29 Sept. 4:30pm - 6:00pm, Charles Library 340