MATH 1041

1. Text: James Stewart, Calculus, Early Transcendentals, 8th Edition, Cengage Learning
2. Supplementary Exercises (SE)

Chapter 3: Differentiation Rules

3.3: Problem 2: $f^{\prime}(x)=-x \sin (x)+\cos (x)+2 \sec ^{2}(x)$

Problem 8: $f^{\prime}(t)=\frac{-\csc ^{2}(t)-\cot (t)}{e^{t}}$
3.4: Problem 14: $f^{\prime}(t)=\pi t \cos (\pi t)+\sin (\pi t) \quad$ Problem 62: $h^{\prime}(1)=\frac{6}{5}$
3.5: Problem 20: $\frac{d y}{d x}=\frac{\left(x^{2}+1\right)^{2} \sec ^{2}(x-y)+2 x y}{\left(x^{2}+1\right)+\left(x^{2}+1\right)^{2} \sec ^{2}(x-y)} \quad$ Problem 50: $y^{\prime}=\frac{2 x}{x^{4}+1}$

Problem 60: $y^{\prime}=\frac{-1}{2+2 x} \sqrt{\frac{1+x}{1-x}}$
3.6: Problem 4: $f^{\prime}(x)=2 \cot (x)$

Problem 40: $y^{\prime}=\left(-1-2 \tan (x)-\frac{2 x+1}{x^{2}+x+1}\right) \frac{e^{-x} \cos ^{2}(x)}{x^{2}+x+1}$
3.7: Problem 2:

- Part (a): $v(t)=\frac{81-9 t^{2}}{\left(t^{2}+9\right)^{2}}$
- Part (b): $v(1)=\frac{18}{25} \mathrm{ft} / \mathrm{sec}$
- Part (c): It's at rest at time $t=3 \mathrm{sec}$
- Part (d): It movese in the positive direction for t in $[0,3)$
- Part (e): Total distance traveled on $[0,6]$ is $\frac{9}{5} \mathrm{ft}$
- Part $(\mathrm{g}): a(t)=\frac{18 t^{3}-486 t}{\left(t^{2}+9\right)^{3}}$ and $a(1)=\frac{-117}{250}$ feet per square second
- After one second, it's slowing down.

Problem 4:

- Part (a): $v(t)=\left(2 t-t^{2}\right) e^{-t}$
- Part (b): $v(1)=\frac{1}{e} \mathrm{ft} / \mathrm{sec}$
- Part (c): It's at rest at time $t=0 \mathrm{sec}$ and at time $t=2 \mathrm{sec}$
- Part (d): It movese in the positive direction for $\operatorname{tin}(0,2)$
- Part (e): Total distance traveled on $[0,6]$ is $\frac{8 e^{4}-36}{e^{6}} \mathrm{ft}$
- Part $(\mathrm{g}): a(t)=\left(t^{2}-4 t+2\right) e^{-t}$ and $a(1)=\frac{-1}{e}$ feet per square second
- After one second, it's slowing down.
3.9: Problem 4: 140 cm per square second

Problem 10:
(a) $-\frac{\sqrt{5}}{4}$
(b) $\frac{4}{\sqrt{5}}$

Problem 14:

(a) We know the snowball's surface area decreases at a rate of $1 \mathrm{~cm}^{2} / \mathrm{sec}$
(b) We want to know the rate at which the snowball's diameter decreases when this diameter is 10 cm

(c)
(d) In terms of the radius r, surface area would be $A=4 \pi r^{2}$. We want to work with diameter d, and we know $r=d / 2$ This gives us $A=\pi d^{2}$.
(e) The diameter decreases at $\frac{1}{20 \pi} \mathrm{~cm} / \mathrm{sec}$.

Problem 30: The angle decreases at a rate of $\frac{1}{50}$-th of a radian per second.
3.10: (No even-numbered problems assigned)

Chapter 4: Applications of Differentiation

4.1: Problem 52: Absolute Maximum if $f(3)=125$, absolute minimum is $f(0)=-64$

Problem 60: Absolute Maximum if $f(1)=\sqrt{e}$, absolute minimum is $f(-2)=\frac{-2}{e}$
4.2: Problem 12: f is a polynomial, so it is everywhere differentiable. In particular, it is continuous on $[-2,2]$ and differentiable on $(-2,2)$. The conclusion of the Mean Value Theorem is satisfied for $c=\frac{2}{\sqrt{3}}$ and $c=\frac{-2}{\sqrt{3}}$.

Problem 14: f is a rational function, so it is differentiable at any point where its denominator isn't zero. So f is indeed continuous on $[1,3]$ and differentiable on $(1,3)$. The conclusion of the Mean Value Theorem is satisfied for $c=\sqrt{3}$.

4.3: Problem 28:

Problem 46:
(a) Increasing in $(0, \infty)$, decreasing on $(-\infty, 0)$
(b) $f(0)=\ln (9)$ is the only local minimum, there are no local maxima
(c) CU on $(-3,3), \mathrm{CD}$ on $(-\infty,-3) \cup(3, \infty)$, the inflection points are $(-3, \ln (18))$ and $(3, \ln (18))$
(d)

4.4:

Problem 14: $\frac{3}{2}$
Problem 16: 2
Problem 20: $\frac{-1}{2}$
Problem 32: 0
Problem 40: 2

