Text: James Stewart, <u>Calculus, Early Transcendentals</u>, 8th Edition, Cengage Learning
 Supplementary Exercises (SE)

 $-\csc^2(t) - \cot(t)$ 

## **Chapter 3: Differentiation Rules**

**3.3:** Problem 2: 
$$f'(x) = -x \sin(x) + \cos(x) + 2 \sec^2(x)$$
 Problem 8:  $f'(t) = \frac{\cot(t)}{e^t} \frac{\cot(t)}{e^t}$   
**3.4:** Problem 14:  $f'(t) = \pi t \cos(\pi t) + \sin(\pi t)$  Problem 62:  $h'(1) = \frac{6}{5}$   
**3.5:** Problem 20:  $\frac{dy}{dx} = \frac{(x^2 + 1)^2 \sec^2(x - y) + 2xy}{(x^2 + 1) + (x^2 + 1)^2 \sec^2(x - y)}$  Problem 50:  $y' = \frac{2x}{x^4 + 1}$   
Problem 60:  $y' = \frac{-1}{2 + 2x} \sqrt{\frac{1 + x}{1 - x}}$   
**3.6:** Problem 4:  $f'(x) = 2 \cot(x)$   
Problem 40:  $y' = \left(-1 - 2 \tan(x) - \frac{2x + 1}{x^2 + x + 1}\right) \frac{e^{-x} \cos^2(x)}{x^2 + x + 1}$   
**3.7:** Problem 2:  
• Part (a):  $v(t) = \frac{81 - 9t^2}{(t^2 + 9)^2}$   
• Part (b):  $v(1) = \frac{18}{25}$  ft/sec  
• Part (c): It's at rest at time  $t = 3$  sec  
• Part (d): It moves in the positive direction for  $t in[0, 3)$ 

- Part (e): Total distance traveled on [0, 6] is  $\frac{9}{5}$  ft
- Part (g):  $a(t) = \frac{18t^3 486t}{(t^2 + 9)^3}$  and  $a(1) = \frac{-117}{250}$  feet per square second
- After one second, it's slowing down.

Problem 4:

- Part (a):  $v(t) = (2t t^2)e^{-t}$
- Part (b):  $v(1) = \frac{1}{e}$  ft/sec

- Part (c): It's at rest at time t = 0 sec and at time t = 2 sec
- Part (d): It moves in the positive direction for t in(0,2)
- Part (e): Total distance traveled on [0, 6] is  $\frac{8e^4 36}{e^6}$  ft
- Part (g):  $a(t) = (t^2 4t + 2)e^{-t}$  and  $a(1) = \frac{-1}{e}$  feet per square second
- After one second, it's slowing down.

**3.9:** Problem 4: 140 cm per square second

Problem 10:

(a) 
$$-\frac{\sqrt{5}}{4}$$
  
(b)  $\frac{4}{\sqrt{5}}$ 

Problem 14:

- (a) We know the snowball's surface area decreases at a rate of  $1 \ cm^2/sec$
- (b) We want to know the rate at which the snowball's diameter decreases when this diameter is 10 cm



- (d) In terms of the radius r, surface area would be  $A = 4\pi r^2$ . We want to work with diameter d, and we know r = d/2 This gives us  $A = \pi d^2$ .
- (e) The diameter decreases at  $\frac{1}{20\pi}$  cm/sec.

Problem 30: The angle decreases at a rate of  $\frac{1}{50}$ -th of a radian per second.

**3.10:** (No even-numbered problems assigned)

## **Chapter 4: Applications of Differentiation**

**4.1:** Problem 52: Absolute Maximum if f(3) = 125, absolute minimum is f(0) = -64

Problem 60: Absolute Maximum if  $f(1) = \sqrt{e}$ , absolute minimum is  $f(-2) = \frac{-2}{e}$ 

**4.2:** Problem 12: f is a polynomial, so it is everywhere differentiable. In particular, it is continuous on [-2, 2] and differentiable on (-2, 2). The conclusion of the Mean Value Theorem is satisfied for  $c = \frac{2}{\sqrt{3}}$  and  $c = \frac{-2}{\sqrt{3}}$ .

Problem 14: f is a rational function, so it is differentiable at any point where its denominator isn't zero. So f is indeed continuous on [1,3] and differentiable on (1,3). The conclusion of the Mean Value Theorem is satisfied for  $c = \sqrt{3}$ .



## Problem 46:

- (a) Increasing in  $(0,\infty)$ , decreasing on  $(-\infty,0)$
- (b)  $f(0) = \ln(9)$  is the only local minimum, there are no local maxima
- (c) CU on (-3,3), CD on  $(-\infty,-3) \cup (3,\infty)$ , the inflection points are  $(-3,\ln(18))$  and  $(3,\ln(18))$
- (d)



## 4.4:

Problem 14:  $\frac{3}{2}$ 

Problem 16: 2

Problem 20: 
$$\frac{-1}{2}$$

Problem 32: 0

Problem 40: 2